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From the density-functional theory to ‘density-free’
approximation schemes; a one-particle-ensemble formalism

Behnam Farid†
Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road,
Cambridge CB3 0HE, UK

Received 7 March 1996

Abstract. On the basis of some principles of the theory of density functionals, we obtain a
fully specified ensemble of eigenstates of an effective (one-body) Hamiltonian whose average
energy is identical to the ground-statetotal energyof the interacting system. It is shown that
within the present framework accurate approximation schemes can be devised through which
the ground-state total energy is obtained by the knowledge of two quantities only, theaverage
density of the electrons, and the external potential.

1. Introduction

The density-functional theory (DFT) of Hohenberg and Kohn [1] allows rigorous
determination of the ground-state properties of interacting systems. For instance, since
[1] the ground-state energy is a functional of the electronic densityn, denoted byEv[n],
with Ev[n] achieving its lowest value at the exact ground-state charge density, minimization
of Ev[n] not only provides the ground-state total energy, but also the exact ground-state
electronic density. For systems of spin-compensated electrons the absolute minimum of
Ev[n] is unique and thusn uniquely determines the ground-state wave function. In this
way Hohenberg and Kohn [1] have shown thatall ground-state properties are uniquely
determined byn. In this paper we shall restrict our considerations to systems of spin-
compensated electrons. Generalization of our formalism for dealing with other systems
[2–6] is straightforward.

As an explicit exact form forEv[n] is unknown, practical applications of the DFT
are entirely based upon approximation schemes. Due to the sensitivity of the kinetic
energy contributionT [n] to Ev[n], straightforward approximations ofEv[n] have not proved
satisfactory. A fruitful way of obtaining simple yet reliable approximations forEv[n] in
a fixed external potential has been provided by the formalism of Kohn and Sham [7]. In
this, Ev[n] is decomposed asEv[n] = Ts [n] + Eext [n] + EH [n] + Exc[n] (we suppress
here the inter-ionic interaction energy), in whichTs [n] stands for the kinetic energy of the
set of fictitious particles in the ground state of the Kohn–Sham Hamiltonian,Eext [n] for
the explicitly expressible electrostatic energy of the electrons due to the external potential,
EH [n] for the electrostatic Hartree energy, andExc[n] for the so-called exchange–correlation
energy; this latter contribution is in factdefinedby the above expression forEv[n]. In

† Present address: Max-Planck-Institut für Festk̈orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Federal
Republic of Germany.
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the scheme of Kohn and Sham,Ts [n], which captures the essential aspects ofT [n], is
evaluated exactly. Approximations ofExc[n] have had less severe invalidating effects
upon the calculated results than those ofTs [n]. For instance, whereas the local-density
approximation (LDA) [1, 7] as applied toExc[n] yields relatively accurate results for many
ground-state properties of real systems, its application toTs [n] (the outcome being the
Thomas–Fermi approximation [8] toTs [n]) is known to yield even fundamentally incorrect
results in many instances (see, e.g., [9]).

The price to be paid for the advantages of the Kohn–Sham formalism is not low, as it
involves a self-consistent solution of a non-linear partial differential equation, the Kohn–
Sham equation. Roughly speaking, i.e. disregarding many technical advances made in recent
years (for a review see [10]), the amount of computation time required for the self-consistent
solution of the Kohn–Sham equation pertaining to a system ofNa atoms scales asN3

a . This
is substantial as compared withNa, with which the computation time would scale were the
explicit form of Ev[n] known. For this reason in the past, in particular in recent years,
a considerable amount of effort has been put into obtaining accurate explicit expressions
for Ts [n] (see [11–15]; see also chapter 5 in [16]). As an explicit expression forTs [n]
makes use of the Kohn–Sham formalism unnecessary [17], the methods dealing with these
(approximate) expressions are collectively referred to as ‘orbital-free’ methods (‘orbital’
here refers to a Kohn–Sham orbital). The approach in this paper considers the problem at
hand from an entirely different viewpoint. In short, we consider hereEv[n] in its entirety
andnot in terms of its constituent parts according to the decomposition scheme of Kohn and
Sham. Based upon the formalism that results from this approach, a class of approximation
schemes can be devised to which we refer as ‘density-free’ schemes, for in these schemes
no explicit use is made of the ground-state charge density. What these schemes yield
is the ground-state total energy corresponding to a given atomic configuration. Thus, in
terms of the simplicity of calculations, our (approximate) quantum-mechanical schemes
are comparable with those based upon the classical interatomic-force models. Further, the
expression forEv[n] that we present in this paper takes explicit account of one essential
aspect of the exactEv[n] that stands in the way of straightforward approximation ofEv[n],
when for thisTs [n] +Eext [n] +EH [n] +Exc[n] is employed. This concerns a singularity in
the dielectric response function of the uniform electron gas, as a function of a wavelength
in the deviation of the exact charge density from a constant value, that renders a direct
gradient expansion ofEv[n] (or of Ts [n]) fundamentally invalid (see, e.g., [15]).

The formalism presented in this paper is also of some formal interest as it amounts to
introduction of a completely specified ensemble of eigenstates of an effective Hamiltonian
whose average energy is identical to the ground-state total energy of the interacting system.
Like the Kohn–Sham theory [7], in the present formalism an effective Hamiltonian is
shown to reproduce a property pertaining to the ground state of the fully interacting
system. However, contrary to the Kohn–Sham case in which for the standard instance of
a non-interactingv-representable charge density it is only theground stateof the effective
Hamiltonian that determines the ground-state charge density of the interacting system, in
our casein principle the entire set of eigenstates of the effective Hamiltonian contribute,
in a ‘statistical’ sense, to the ground-state total energy of the interacting system. Another
aspect in which the two formalisms differ is that whereas in the Kohn–Sham formalism
with each interacting electron a fictitious particle is associated, each corresponding to one
of the Ne eigenfunctions of the Kohn–Sham Hamiltonian with lowest eigenvalues, in the
present formalism the number of fictitious ‘particles’ (associated with the eigenfunctions of
our effective Hamiltonian, as forming the ensemble in question) is not equal toNe, but to
the dimension of the representation space of the effective Hamiltonian.
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The general plan of this paper is as follows. In section 2 we present our theory, and in
section 3 we give its underlying details. Based upon the proposed approach, in section 4 we
present the relevant ingredients for application of our formal method within the framework
of the perturbation theory, the perturbation here being the external potential multiplied by
a constant in the range of 0 to 1. In subsections 4.1 and 4.2 we apply the zeroth- and first-
order perturbation theories, and in subsection 4.3 we outline how in principle the perturbative
incorporation of the effects of the external potential can be carried through to any arbitrary
order. In section 5 we present and discuss some numerical results pertaining to a quasi-one-
dimensional inhomogeneous system obtained through application of the schemes presented
in this paper. Although in this paper we frequently make reference to the LDA scheme—
we even explicitly make use of this scheme in section 5—our entire proposed strategy is
independent of any approximation method. We end this paper with a summary and some
concluding remarks in section 6.

2. Theory

Consider a system ofNe interacting electrons moving in the field of the external potential
vext (r). The ground state of this system, according to Hohenberg and Kohn [1], is a
functional of the electronic densityn; n(r) = 〈90|ψ̂†(r)ψ̂(r)|90〉, in which |90〉 denotes
the ground state and̂ψ†, ψ̂, are creation and annihilation field operators. This functional,
denoted byEv[n], through neglecting the inter-ionic interaction energy can be written as

Ev[n] =
∫

d3r vext (r)n(r) + F [n] (1)

in which (we use Hartree atomic units throughout)

F [n] ≡ 〈90|
{∫

d3r ψ̂†(r)

[
−1

2
∇2

]
ψ̂(r)

+ 1

2

∫
d3r d3r ′ ψ̂†(r)ψ̂†(r′)vc(r − r′)ψ̂(r′)ψ̂(r)

}
|90〉 (2)

is explicitly independent ofvext (i.e., it is universal [1]);vc(r − r′) ≡ 1/|r − r′| stands for
the Coulomb interaction function. With|9(λ)

0 〉 the ground state pertaining to the system in
the field of the external potentialv(λ)

ext (r) ≡ λvext (r), andn(λ)(r) the corresponding charge
density (n is thus short forn(λ=1)), through application of the Hellmann–Feynman theorem
one obtains [18, 19]

dEv[n(λ)]

dλ
=

∫
d3r vext (r)n(λ)(r). (3)

Upon integration of both sides of equation (3) with respect toλ over [0, 1], we obtain

Ev[n] = Ev[n(0)] +
∫

d3r vext (r)neff (r) (4)

in which Ev[n(0)] is the ground-state energy of the uniform electron gas and

neff (r) ≡
∫ 1

0
dλ n(λ)(r). (5)
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With n(0) independent ofr (thus for simplicity we exclude Wigner crystallization), we have
Ev[n(0)] = TT F [n(0)] + ELDA

xc [n(0)], in which TT F [n] ≡ 3
10(3π2)2/3

∫
d3r n5/3(r) stands for

the Thomas–Fermi kinetic energy functional [8] and

ELDA
xc [n] ≡

∫
d3r εxc(n(r))n(r) (6)

for the LDA of the exchange–correlation energy functional—these donot imply
approximation in our scheme, sincen(0) is assumed constant—withεxc(n) the exchange
and correlation energy per electron of the uniform electron gas at densityn. Accurate
interpolating expressions [20, 21] for this quantity based upon quantum Monte Carlo results
[22] at different electronic densities are now available.

Suppose now thatλ is varied toλ + dλ. As n(λ) is a functional ofv(λ)
ext , to linear order

in dλ for the change inn(λ)(r) we have∫
d3r ′ χ(λ)(r, r′)[v(λ+dλ)

ext (r′) − v
(λ)
ext (r

′)]

which leads to

dn(λ)(r)/dλ =
∫

d3r ′ χ(λ)(r, r′)vext (r
′).

Hereχ(λ)(r, r′) stands for the density–density correlation function of theinteractingsystem
in the force field of the external potentialv

(λ)
ext , defined asχ(λ)(r, r′) ≡ δn(λ)(r)/δv

(λ)
ext (r

′).
Upon twice integrating the expression for dn(λ)(r)/dλ with respect toλ, we obtainneff (r).
Thus using equations (4) and (5), while exchanging orders of ther- andλ-integrations, we
arrive at

Ev[n] = E′
v[n(0)] +

∫
d3r d3r ′ vext (r)χeff (r, r′)vext (r

′) (7)

in which

χeff (r, r′) ≡
∫ 1

0
dλ (1 − λ)χ(λ)(r, r′) (8)

and

E′
v[n(0)] ≡ Ev[n(0)] + n(0)

∫
d3r vext (r)

=
{

3

10

(
3π2Ne

�c

)2/3

+ εxc(Ne/�c) + ṽext (G = 0)

}
Ne. (9)

Here �c stands for the volume of the system andṽext (G) for a Fourier component of
the external potential (for our conventions concerning the Fourier transforms, see [23]);G
denotes a reciprocal-lattice vector corresponding to the underlying Bravais lattice. On the
basis of the fact thatχ(λ) is negative semi-definite (in the space of non-constant functions it is
negative definite) [24, 25], and that forλ ∈ [0, 1], (1−λ) is non-negative, we conclude from
equation (7) thatEv[n] 6 E′

v[n(0)]; strict inequality holds whenvext (r) is not constant—
as indicated, for constantvext the second term is vanishing. The expression presented in
equation (7), in combination with that in equation (8), is the central result of this paper.

Since χeff is real and symmetric, it can be described by the following spectral
representation:

χeff =
∑

s

γs |s〉〈s| (10)
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in which |s〉 is a normalized eigenvector ofχeff with γs the corresponding eigenvalue. Thus
equation (7) can be written in the alternative form

Ev[n] = E′
v[n(0)] +

∑
s

γs |ξs |2 (11)

in which

ξs ≡ 〈vext |s〉. (12)

Herevext (r) = 〈r|vext 〉.
Now let us define the following effective Hamiltonian

Ĥ ≡
∑

s

es |s〉〈s| (13)

in which

es ≡ 〈vext |vext 〉γs. (14)

Since
∑

s |ξs |2 = 〈vext |vext 〉, with

%s ≡ |ξs |2
〈vext |vext 〉 (15)

it is clear that

ρ̂ ≡
∑

s

%s |s〉〈s| (16)

is a density operator. Equation (11) can therefore alternatively be written as

Ev[n] = E′
v[n(0)] + Tr(ρ̂ Ĥ). (17)

Thus we have succeeded in obtaining an ensemble of eigenstates of an effective Hamiltonian
(i.e. Ĥ) of which the energy is identical to the ground-state total energy of the many-body
Hamiltonian. The wavefunction associated with each member of the present ensemble is
φs(r) = 〈r|s〉. Becauseγs 6 0 (in the space of non-vanishing functions with zero average,
γs < 0), it is clear thates 6 0 (or es < 0). Note that ases is equal to a constant multiple
of γs , for all s, the constant beingc ≡ 〈vext |vext 〉, we haveĤ = cχeff .

Before ending this section, let us enumerate three features that we consider most
appealing of the result in equation (7). First, because of(1 − λ) in equation (8), whose
magnitude forλ ∈ [0, 1] decreases with increasingλ, the present formalism de-emphasizes
the contributions of the most inhomogeneous states (corresponding toλ ∼ 1) to the ground-
state total energyEv[n]. Second,Ev[n] in equation (7) has anexplicit quadratic dependence
upon the external potential, implying that for reasonably weak external potentials it gives
accurate energies even by taking forχeff the one pertaining to the uniform electron gas.
And finally, the failure ofordinary gradient expansions forEv[n], obtained through the
gradient expansions forTs [n] in Ts [n] +Eext [n] +EH [n] +Exc[n], has been ascribed to the
logarithmic singularity in the density–density response function of the uniform electron gas,
i.e. the Lindhard function, rendering a Taylor expansion in ‘powers’ of the gradient of the
charge density formally inapplicable (see, e.g., [15]). Even whenχeff is replaced by the
one pertaining to the uniform electron gas, the expression in equation (7) takes full account
of this singularity (see in particular subsection 4.1 below).
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3. Details

We devote this section to details concerningχ(λ) andχeff . When no confusion arises, we
suppressλ in χ(λ) and the related functions. We also assume that all calculations are being
carried out within the framework of the DFT. In this way by ‘the non-interacting system’
we mean the system of the Kohn–Sham particles.

We present most results below in the momentum representation for crystals (see [23]).
We shall indicate the momentum representation of the quantities by means of placing a
tilde over their symbols in the abstract notation. Further, in the following we need to
work not only withχ , but also with its inverseχ−1. However, sinceχ (as well asχ0, to
be introduced below) has a vanishing eigenvalue corresponding to a constant eigenvector
[25], it is required that the inverse be defined in the space of functions orthogonal to this
eigenvector, i.e. the space of functions with zero average value. This will be assumed
throughout.

The density–density correlation function for the fully interacting system,χ , is obtained
from that of the non-interacting system,χ0, as follows:

χ = (I − χ0C)−1χ0 (18)

in which

C ≡ vc + Kxc. (19)

In the coordinate representation we haveKxc(r, r′; [n]) ≡ δ2Exc[n]/(δn(r)δn(r′)) =
δvxc(r; [n])/δn(r′), in which vxc(r; [n]) stands for the exchange–correlation potential. The
latter is part of the effective potentialveff (r; [n]) ≡ vext (r) + vH (r; [n]) + vxc(r; [n]),
with vH (r; [n]) ≡ ∫

d3r ′ vc(r − r′)n(r′), the Hartree potential, in the Kohn–Sham
equation [7], i.e.[

−1

2
∇2 + veff (r; [n])

]
ψi (r) = εiψi (r). (20)

The exact functional form forKxc[n] is not known. For uniform systems, however, an
accurate expression forKxc[n] based upon a combination of numerical and exact results
has recently been proposed [25]. Using equation (6) we have

KLDA
xc (r, r′; [n]) = κxc(n(r)) δ(r − r′)

κxc(n(r)) ≡ dµxc(n(r))

dn(r)

(21)

in which µxc(n) ≡ vLDA
xc (n) = d(nεxc(n))/dn stands for the LDA exchange–correlation

potential. In the momentum representation for a periodic system we have [23]

(K̃LDA
xc [n])G,G′ = κ̃xc(G − G′; [n]). (22)

For uniform systems(K̃LDA
xc [n])G,G′ is diagonal, with the diagonal elements equal to

κ̃(0; [n]), for all G. Contrary to this, within the framework of the exact DFT̃Kxc(q; [n])
has a non-trivial dependence upon momentumq; thus although for a uniform system
(K̃xc[n])G,G′ is also diagonal, the diagonal elements̃Kxc(q = |G|; [n]) are different for
different |G|. In this connection it should be noted that by definition

K̃xc(q; [n]) → K̃LDA
xc [n] for q → 0.

From figure 9 in [25] it appears that replacing̃KLDA
xc [n] by K̃xc(q; [n]), as far as̃χ(q; [n])—

and thusχ̃eff (q)—is concerned, is most important forq in the vicinity of q = 2qF (see
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[26]). Observing that pseudopotentials are most dominant in this region [29], incorporation
of K̃xc(q; [n]) in the calculations may lead to non-negligible improvements of the total-
energy results in comparison with those according to the LDA (see [27]).

In terms of the time Fourier transform of the single-particle Green function pertaining
to the Kohn–Sham (KS) system,GKS(r, r′; ε), we have

χ0(r, r′; [n]) = 2
∫ ∞

−∞

dε

2π i
GKS(r, r′; ε)GKS(r

′, r; ε) (23)

in which [n] in the argument ofχ0 indicates the charge density associated with the Kohn–
Sham system. The factor 2 on the right-hand side accounts for the spin degeneracy of the
Kohn–Sham one-particle states. It can be shown that likeχ , χ0 is negative semi-definite
[24, 25]. In the space of non-vanishing functions with zero average value,χ0 is negative
definite.

4. Approximation schemes

In the following two subsections two approximation schemes within the framework of the
theory presented in section 2, which make use of the perturbation theory, will be introduced
and discussed. In subsection 4.3 we sketch a generalization of these two schemes.

Before discussing these methods, it may be of interest to mention that as there are
already a number of simplified but accurate expressions forχ available (see [28]), one
may consider employing these, rather than the perturbatively determinedχs that will be
presented below. However, these models may not be directly applicable, as all of the
reliable models forχ require ana priori knowledge of some exact properties of the system,
such as the value for the average gap in the excitation spectrum and/or the ground-state
charge-density profile. One of these models is due to Penn [30], which is specifically suited
for dealing with semiconductors, as it takes account of the gap in the elementary excitations
of these materials. A more recent model is due to Levine and Louie (see [31]), which
has extensively been used in the calculations of the self-energy operator with the aim of
evaluating the quasi-particle energies in semiconductors and insulators. For completeness,
in [33] Car et al provide a quantitative analysis of the properties of a number of model
response functions.

4.1. A scheme based upon the zeroth-order perturbation theory

In the momentum representation, from equations (18) and (19) we obtain

χ̃(q; [n]) = χ̃0(q; [n])

1 − {̃vc(q) + K̃xc(q; [n])}χ̃0(q; [n])
(24)

in which ṽc(q) = 4π/q2, andχ̃0(q; [n]) is the well-known Lindhard function,

χ̃0(q; [n]) = −3n

q2
F

{
1

2
+ qF

2q

(
1 − q2

4q2
F

)
ln

∣∣∣∣q + 2qF

q − 2qF

∣∣∣∣} (25)

with qF ≡ (3π2n)1/3 the Fermi wave number corresponding to the (constant) density
n. Since χ̃(q; [n]) does not depend uponvext , χ̃eff (q) is obtained immediately; with∫ 1

0 dλ (1 − λ) = 1/2 we have

χ̃eff (q) = 1

2
χ̃(q; [n(0)]). (26)
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We shall denote this function bỹχeff ;u(q), with ‘u’ referring to the uniform electron gas.
Thus, from equation (7) up to and including the second order invext we have (see [23])

Ev[n] = E′
v[n(0)] + �c

∑
G

χ̃eff ;u(|G|)|̃vext (G)|2. (27)

This expression is identical to that obtained earlier by Heine and Weaire [32].
It is obvious that calculation of the ground-state total energy according to equation (27)

only requires knowledge of the total number of the electrons in the system,Ne (determining
n(0) = Ne/�c), and the Fourier components of the external potential. This will remain so in
the improved scheme to be presented in the following subsection. Finally, for the effective
HamiltonianĤ within the present approximate framework we haveĤ = cχ [n(0)]/2 (for c

see the text following equation (17) above).

4.2. A scheme based upon the first-order perturbation theory

In this subsection we shall present a formalism according to whichχ0 and C (see
equation (18) above) are approximated to linear order in the external potential, but if
desired these first-order corrections caneasilybe taken into account to infinite order in the
calculation ofχeff (note the inversion involved in the expression forχ in equation (18)).
The external potential with which we shall be working in this subsection will be assumed
to have zero average value [34].

It is known that for aconstantexternal potential, and not too low charge densities (to
exclude Wigner crystallization), the exchange and correlation potential is also constant (see,
e.g., the appendix in [25]). By exposing this system tovext (r), with

∫
d3r vext (r) = 0, to

linear order invext the changeδn(r) in the charge density of the system with respect ton(0)

is obtained from

δn(r) =
∫

d3r ′ χu(|r − r′|; [n(0)])vext (r
′). (28)

Again, to linear order invext the inducedpotential (i.e., the potential besidesvext itself)
in the Kohn–Sham equation has the form∫

d3r ′ [vc(r − r′) + Kxc(|r − r′|; [n(0)])]
∫

d3r ′′ χu(|r′ − r′′|; [n(0)])vext (r
′′)

which is simply thelinear variation of the Hartree potentialvH (r; [n]) in addition to
that of the exchange–correlation potential. The term inside the square brackets is simply
C(|r − r′|; [n(0)]), defined in equation (19). Thus for thetotal potential in the Kohn–Sham
equation, correct to first order invext , we have

veff (r) =
∫

d3r ′ ε−1
e;u(|r − r′|; [n(0)])vext (r

′)

(symbolically,veff = ε−1
e;uvext , or ṽeff (q) = ε̃−1

e;u(q; [n(0)])̃vext (q)), in which ε−1
e;u ≡ I + Cχu

denotes the inverse of the so-called ‘electron’ dielectric function pertaining to the uniform
electron gas with charge densityn(0). This function is different from the inverse of the
so-called ‘electron-test-charge’ dielectric functionε−1

T C;u ≡ I +vcχu (see [35]). It can easily
be shown thatεe = I − Cχ0. As we observe,veff is obtained through knowledge of
n(0) = Ne/�c andvext .

With the above-obtainedveff , to linear order invext (or veff ) for the single-particle Green
function of the Kohn–Sham system we haveGKS(r, r′; ε) = G0(|r−r′|; ε)+∫

d3r ′′ G0(|r−
r′′|; ε)veff (r′′)G0(|r′′ − r′|; ε), which follows from the first-order Born expansion of the
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Dyson equation. In the momentum representation for a crystal this expression can be written
as

GKS;G,G′(q; ε) = G0(|q + G|; ε)δG,G′ + ṽeff (G − G′)G0(|q + G|; ε)G0(|q + G′|; ε)

(29)

in which G0 denotes the single-particle Green function of the uniform-electron-gas system.
From this result, making use of equation (23), to linear order inveff we have

χ0;G,G′(q = 0) = χ̃0;u(|G|; [n(0)])δG,G′ + 2̃veff (G − G′)
∫

d3k

(2π)3
IG,G′(k) (30)

in which

IG,G′(k) ≡ J (|k + G|, |k + G′|, |k|) + J (|k − G|, |k − G′|, |k|) (31)

with

J (q1, q2, q3) ≡
∫

dε

2π i
G0(q1; ε)G0(q2; ε)G0(q3; ε). (32)

Making use of

G0(q; ε) =
{

2(qF − q)

ε − q2/2 − iη
+ 2(q − qF )

ε − q2/2 + iη

}
η ↓ 0 (33)

with q ≡ |q|, and the residue theorem, we easily obtain

J (q1, q2, q3) = 4

{
2(qF − q1)2(qF − q2)2(q3 − qF )

(q2
2 − q2

3)(q2
3 − q2

1)

− 2(q1 − qF )2(q2 − qF )2(qF − q3)

(q2
2 − q2

3)(q2
3 − q2

1)

+ 2(qF − q1)2(q2 − qF )2(qF − q3)

(q2
3 − q2

2)(q2
2 − q2

1)

− 2(q1 − qF )2(qF − q2)2(q3 − qF )

(q2
3 − q2

2)(q2
2 − q2

1)

+ 2(qF − q1)2(q2 − qF )2(q3 − qF )

(q2
2 − q2

1)(q2
3 − q2

1)

− 2(q1 − qF )2(qF − q2)2(qF − q3)

(q2
2 − q2

1)(q2
3 − q2

1)

}
. (34)

Using this result, the 3-momentum integral in equation (30) can be evaluated fully
analytically (the result will be presented elsewhere).

As for Kxc(r, r′; [n(0) + δn]), to linear order inδn we have

Kxc(r, r′; [n(0) + δn]) = Kxc(|r − r′|; [n(0)]) +
∫

d3r ′′ δKxc(r, r′; [n])

δn(r′′)

∣∣∣∣
n=n(0)

δn(r′′).

(35)

Within the LDA, for the last term in this expression one has the following simple form∫
d3r ′′ δKxc(r, r′; [n])

δn(r′′)

∣∣∣∣
n=n(0)

δn(r′′) = κ ′
xc(n

(0)) δn(r) δ(r − r′)

κ ′
xc(n) ≡ d2µxc(n)

dn2

(36)
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which will be the result to be employed in the absence of any better alternative (recall
that Kxc(|r − r′|; [n(0)]) does not need to be replaced by, say, its LDA counterpart—
see subsection 4.1). In the momentum representation we have the following hybrid [36]
expression:

(K̃xc[n(0) + δn])G,G′ = K̃xc(|G|; [n(0)])δG,G′ + κ ′
xc(n

(0)) δñ(G − G′). (37)

For δn(r) in equation (36) we employ the result given in equation (28), so that we have

δñ(G − G′) = χ̃u(|G − G′|; [n(0)])̃vext (G − G′) (38)

in which χ̃u(q = |G − G′|; [n(0)]) is given in equation (24).
Having obtained bothχ0 andC to first order invext (equations (30), (19) and (35)), we

now proceed with determiningχ . To this end we first writeχ(λ)

0 = χ
(0)

0 + λ δχ0 + O(λ2)

and C(λ) = C(0) + λ δC + O(λ2). From the Dyson-type equationχ = χ0 + χ0Cχ (see
equation (18)) we obtainχ−1 = χ−1

0 − C and consequentlyχ = (χ−1
0 − C)−1. Thus with

χ
(λ)

0 = χ
(0)

0 + λ δχ0 = χ
(0)

0 (I + λχ
(0)−1
0 δχ0) we haveχ

(λ)−1
0 = (I + λχ

(0)−1
0 δχ0)

−1χ
(0)−1
0 =

χ
(0)−1
0 − λχ

(0)−1
0 δχ0 χ

(0)−1
0 + O(λ2), so χ

(λ)−1
0 − C(λ) = [χ(0)−1

0 − C(0)] − λ[δC +
χ

(0)−1
0 δχ0 χ

(0)−1
0 ] + O(λ2). In this way we arrive at the following symmetric expression:

χ(λ) = −(−[χ(0)−1
0 − C(0)] + λ[δC + χ

(0)−1
0 δχ0 χ

(0)−1
0 ])−1 + O(λ2). (39)

The first term inside the parentheses is−χ(0)−1, and is thus symmetric and positive (semi-)
definite. In fact since−χ(0)−1 pertains to the uniform electron gas (λ = 0), it is diagonal
in the momentum representation. We write

− [χ(0)−1
0 − C(0)] = D1/2D1/2 (40)

which defines the (diagonal) matrixD (see [37]). Thusχ(λ) to first order inλ can be written
as

χ(λ) = −D−1/2(I + λF)−1D−1/2 (41)

in which

F ≡ D−1/2(δC + χ
(0)−1
0 δχ0 χ

(0)−1
0 )D−1/2. (42)

Since bothχ(0)

0 andD1/2 are diagonal in the momentum representation, their inverses are
readily obtained. The desiredχ(λ), correct to first order invext , is thus

χ(λ) = χ(0) + λD−1/2FD−1/2 (43)

from which we obtain the first-order result

χeff = 1

2
χ(0) + 1

6
D−1/2FD−1/2. (44)

Note the three-times-smaller pre-factor of the second term on the right-hand side of
this expression, as compared with that of the first term; the pre-factor of themth-order
contribution amounts to 1/(m2 + 3m + 2), the quadratic decrease with respect to increasing
m, rather than a linear one, being a direct consequence of(1−λ) in the defining expression
for χeff (see equation (8) above).

The operatorF is symmetric. Let therefore{|`)} denote the complete set of eigen-
functions ofF with {ν`} the corresponding eigenvalues. By completeness (i.e.

∑
` |`)(`| =

I ) we can write

I + λF =
∑

`

(1 + λν`)|`)(`|. (45)
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Consequently, we have

(I + λF)−1 =
∑

`

1

1 + λν`

|`)(`|. (46)

Thus from equation (41) it follows that

χ(λ) =
∑

`

−1

1 + λν`

|`〉〈`| (47)

in which

|`〉 ≡ D−1/2|`). (48)

Sinceχ(λ) must be negative (semi-) definite, from equation (47) we deduce that the validity
of a first-order expansion is, strictly speaking, limited to cases in whichν` > −1, for all `.

From equations (8) and (47) we obtain

χeff =
∑

`

α`|`〉〈`| (49)

in which

α` ≡
∫ 1

0
dλ

(λ − 1)

1 + λν`

= 1

ν`

−
(

1

ν`

+ 1

ν2
`

)
ln |1 + ν`|. (50)

The non-perturbative nature of the above result forχeff is apparent. Even if the eigenvalues
{ν`} in equation (50) are determined perturbatively, rather than by exact diagonalization of
F , this result retains its non-perturbative nature and therefore, on general grounds, is more
accurate than that obtained bydirect perturbative determination ofχeff (equation (44)).
The numerical results, to be presented in section 5, clearly confirm the validity of this
statement. The first-order result given in equation (44) follows from the more general
expression given in equation (49) simply through employing the first-order expansion of
1/(1 + λν`), i.e. 1− λν`, in equation (46), from which it follows thatα` = − 1

2 + 1
6ν`. By

comparison of the expression in equation (49) and that in equation (10), we observe that
within the present approximation schemeα` ⇔ γs and that|s〉 ⇔ |`〉. With φ`(r) ≡ 〈r|`〉,
and φ̃`(G) a corresponding Fourier component, we haveξ` = �

1/2
c

∑
G φ̃`(G)̃vext (G) (see

[23]). From this, making use of equation (11),Ev[n] is readily obtained.
The amount by whichν` deviates from zero is a direct measure for the importance

of the inhomogeneity in the system. As a result, the amount by whichα`, or indeedγs ,
deviates from− 1

2 (see equation (50)) reflects the effects ofvext upon the behaviour of
the system. Further, likeγs , α` should be negative. A positiveα` signals failure of the
first-order perturbation theory as employed in this subsection.

Finally, the use of the perturbation theory does not need to be limited to taking the state
corresponding toλ = 0 (the uniform electron gas) as the unperturbed state. Indeed, any
other state, corresponding toλ = λ0 6= 0, also qualifies for being chosen as ‘unperturbed’
(perturbation then amounts tov(λ)

ext − v
(λ0)
ext ). Such a choice may be advantageous, since for

reasons related to the symmetry of the ground state use of the state corresponding toλ0 → 0
may yield more accurate value forEv[n] than that corresponding toλ0 = 0 (in section 5 this
is shown to be indeed the case). In such cases, exact, as opposed to perturbative, evaluation
of χ(λ0) within, e.g., the LDA is practicable even for very complex systems: forλ0 → 0, the
number of plane waves for representing the Kohn–Sham Hamiltonian and wavefunctions
({ψi (r)}—see equation (20) above) can be very limited (see [38]).
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4.3. A scheme based upon an arbitrary-order perturbation theory

The application of the method of obtaining a closed expression forχ(λ), without the need
for an explicit inversion ofI + λF , is not restricted to the case in whichC and χ0 are
expanded to first order invext , as indeed a straightforward generalization of the method
employed above is possible. In the following we shall assume that theχ(λ)−1s, as obtained
by lower-order perturbation expansions (i.e., lower than the desired order), are all like
the exactχ(λ)−1 negative definite; a non-negative definiteχ(λ)−1 for some order of the
perturbation theory and a range of values ofλ signals failure of the perturbation theory in
that order for the mentioned range of values ofλ. Within the present general scheme, the
effective HamiltonianĤ presented in equation (13) is also directly obtained. We restrict
our analysis here to the case in whichχ(λ)−1 has been evaluated to second order invext ;
generalization to other orders is trivial.

Supposeχ(λ) = (A0 + λA1 + λ2A2)
−1 + O(λ3), in which for clarity of presentation we

have introduced the symmetric operatorsA0, A1 andA2 (A0 andA1 can be deduced from
equation (39)). As stated, we assumeA0 + λA1 to be negative definite for allλ, λ ∈ [0, 1].
It is easily verified thatχ(λ) = (−[A0 + λA1])−1/2(I + λ2(−[A0 + λA1])−1/2A2 (−[A0 +
λA1])−1/2)−1(−[A0 + λA1])−1/2 + O(λ3). Since as far asχ(λ)−1 is concerned we are
interested in the result correct to second order invext , we can equally write

χ(λ) = (−[A0 + λA1])−1/2(I + λ2(−A0)
−1/2A2 (−A0)

−1/2)−1(−[A0 + λA1])−1/2

+ O(λ3).

Thus from the spectral representation forF ′ ≡ (−A0)
−1/2A2 (−A0)

−1/2, and that of
A0 + λA1, which is assumed to have already been calculated, the explicitλ-dependence
of χ(λ) is obtained. In this way theλ-integral in the expression forχeff can be evaluated
analytically. For non-negative definiteA0 + λA1, [−(A0 + λA1)]−1/2, if not singular, is
essentially complex valued. Finally, the matricesA0, A1, etc, do not need to be evaluated
through application of the perturbation theory; these can be identified as the appropriate
coefficients of a polynomial interpolation ofχ(λ)−1, with χ(λ)−1 being evaluated exactly at
a number of small values forλ. As stated earlier, direct evaluation ofχ(λ)−1 for small
values ofλ is computationally not demanding.

5. Some numerical results

We have applied the formalism presented in this paper to a quasi-one-dimensional model
of an inhomogeneous electronic system. This is a generalization of a model originally
introduced by Sham, Schlüter and Lannoo [39], and is employed subsequently by several
authors. For details concerning the self-consistent LDA calculations for this model
we refer the reader to [19]. The Kohn–Sham equation dealt with in this section
has the form [− 1

2d2/dx2 + veff ;α(x; [n])]ψi (x) = εiψi (x), in which veff ;α(x; [n]) ≡∫
d2r⊥ 82

α(r⊥)veff (r; [n]), with 82
α(r⊥) ≡ (α2/π) exp(−α2r2

⊥); herer2
⊥ ≡ y2 + z2, with

y and z the remaining Cartesian coordinates ofr. For the calculations of this section we
have chosenα = 2.513. In what follows we shall suppress the bar onn, i.e. henceforth
n will denote n(x) rather thann(r). For the external potential in our calculations we
have chosenvext (x) = A cos(2πx/ac) (notice thatṽext (G = 0) = 0), which definesac

as the length of the unit cell of the periodic system under consideration; the results to be
presented below pertain toac = 5 au. ForA we have chosen the following five values:
A = 0.05, 0.1, 0.15, 0.3, 0.5 (Hartree). We have assumed that there are two electrons per
unit cell of our system, implying one filled band in the ground state of the Kohn–Sham
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system. Taking into account that the width of the valence band in the present calculations
varies in the range 0.15–0.2 Hartree, it is clear that the values forA considered here represent
a very wide range of inhomogeneities. All of the LDA quantities employed here have been
obtained from exact expressions [19], exceptKLDA

xc [n] which we have obtained through
use of a finite-difference method; the relative change in the amplitude ofn that we have
used amounts to 10−9/2. As a check for the accuracy of our results, we have carried out an
explicit calculation ofEv[n] according to equation (7)—with theλ-integration involved in
the calculation ofχeff (see equation (8)) evaluated by means of a 10-point Gauss–Chebyshev
quadrature method. For the case corresponding toA = 0.15 we have obtained−0.519 299
hartrees per electron, to be compared with−0.519 305 which has been obtained through
the standard Kohn–Sham approach. For the Thomas–Fermi kinetic energy functional, as
required for the evaluation ofE′

v[n(0)] (see the text following equation (5)), in the present
model we have [19]TT F [n] ≡ (π2/24)

∫ Lc/2
−Lc/2 dx n3(x) → (π2/24)(Ne/Lc)

2Ne for the

constant densityn = n(0) = Ne/Lc, in which Lc stands for the length of the system (the
equivalent of�c).

The calculations that we have carried out have been based upon both the zeroth-order
perturbation theory as considered in subsection 4.1, and the first-order perturbation theories
discussed in subsection 4.2; we have considered both the case in which(I + λF)−1 is
replaced byI−λF (method I), and the case in which(I+λF)−1 is fully incorporated through
use of the spectral representation as given in equation (46) (method II). As mentioned
in subsection 4.2, method I amounts to approximatingα` as given in equation (50) by
− 1

2 + 1
6ν`. Clearly, the zeroth-order results follow from further approximatingα` by − 1

2.
For the purpose of the present zeroth-order calculations we have employed forχ̃0 and
K̃xc (see equation (24)) those calculated at a finite but small value ofλ; for this, denoted
by λ0, we have chosen two different values,λ0 = 0.0302, and 0.01 [40]. For the first-
order calculations, we have determinedδC andδχ0 through the finite-difference expression
δY = [Y (λ1) − Y (λ0)]/(λ1 − λ0), in which Y (λ) stands for eitherC(λ) or χ

(λ)

0 . For λ0, λ1 we
have chosen two sets of values,λ0 = 0.0302,λ1 = 1.001λ0, andλ0 = 0.01, λ1 = 1.01λ0.
For each value ofA we have also carried out self-consistent calculations with the Kohn–
Sham equation and obtained in this way the total energies which we refer to as ‘Exact’.
We have carried out all of the calculations by making use of two sets of plane-wave basis
functions, one consisting of 5 plane waves and the other of 11 plane waves (see [41]). The
results of the two calculations agree with each other to at least 1 part in 105.

In table 1 we present the zeroth-order results for the total energies and1Ev[n] ≡
Ev[n] − E′

v[n(0)]—see equation (7). For comparison, for each value ofA we present also
the ‘Exact’ results. It is1Ev[n] that gives the contribution of the external potential to the
total energy. Consequently, in order to observe more clearly the relevance of1Ev[n] as
calculated perturbatively, we also present therelative deviationsof 1Ev[n] with respect to
the Exact values, i.e.δEv[n] ≡ (1Ev;Exact[n] − 1Ev[n])/1Ev;Exact[n]. It appears that in
all of the cases considered, the perturbatively determined total energies arelower than the
Exact values; this trend is opposite to that corresponding to the results obtained within the
framework of the first-order perturbation theory to be discussed below. From the data in
table 1 it is easily deduced that for the cases corresponding toλ0 = 0.0302, the relative
deviations in the perturbative values for thetotal energies vary between−2.25 and−0.01%
of the Exact results; for the cases corresponding toλ0 = 0.01, for this range we have−2.86
to −0.02%. These results are clearly very encouraging.

In table 2 we compare the results for the total energies and1Ev[n]s as obtained by
methods I and II. Here we also present therelative deviationsδEv[n] of the 1Ev[n]s, as
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Table 1. Ground-state total energies (in units of hartrees per electron) obtained through use
of the zeroth-order perturbation theory along with the contributions due to the inhomogeneity
of the external potential (i.e.,1Ev [n] ≡ Ev [n] − E′

v [n]). The relative deviations,δEv [n], of
1Ev [n] with respect to the exact results (indicated by ‘Exact’) are also presented; these ‘Exact’
results are obtained through application of the standard Kohn–Sham formalism. TheKxc and
χ0 employed (see equation (24)) areK

(λ)
xc andχ

(λ)
0 , evaluated atλ = λ0; the un-enclosed entries

correspond toλ0 = 0.0302, and those enclosed inside parentheses toλ0 = 0.01. The calculations
have been carried out within a basis of five plane waves.

Exact

A Ev [n] 1Ev [n] δEv [n] Ev [n] 1Ev [n]

0.05 −0.511 83(−0.511 85) −0.001 06(−0.001 08) −0.06 (−0.08) −0.511 77 −0.001 00
0.1 −0.514 94(−0.515 03) −0.004 17(−0.004 27) −0.07 (−0.10) −0.514 65 −0.003 88
0.15 −0.520 05(−0.520 29) −0.009 29(−0.009 52) −0.09 (−0.11) −0.519 30 −0.008 54
0.3 −0.547 16(−0.548 30) −0.036 39(−0.037 53) −0.12 (−0.15) −0.543 30 −0.032 53
0.5 −0.610 04(−0.613 67) −0.099 27(−0.102 90) −0.16 (−0.20) −0.596 60 −0.085 84

Table 2. Ground-state total energies (in units of hartrees per electron) according to methods I
and II (see the text) which are based upon the first-order perturbation theory. The contributions
to the total energies due to the inhomogeneity of the external potential,1Ev [n], as well as
the relative deviations of these,δEv [n], with respect to the Exact values are also given. The
requiredδC andδχ0 (see equation (39)) have been obtained through direct calculations ofC(λ)

and χ
(λ)
0 at λ0 = 0.0302, λ1 = 1.001λ0 (un-enclosed entries) andλ0 = 0.01, λ1 = 1.01λ0

(entries enclosed by parentheses). The calculations have been carried out within a basis of 5
plane waves. For comparison with the Exact results, see table 1.

Method I

A Ev [n] 1Ev [n] δEv [n]

0.05 −0.511 60(−0.511 30) −0.000 83(−0.000 53) 0.17 (0.47)
0.1 −0.513 85(−0.512 49) −0.003 08(−0.001 72) 0.21 (0.56)
0.15 −0.517 33(−0.514 04) −0.006 57(−0.003 27) 0.23 (0.62)
0.3 −0.534 02(−0.518 84) −0.023 25(−0.008 07) 0.29 (0.75)
0.5 −0.567 52(−0.520 50) −0.056 75(−0.009 73) 0.34 (0.89)

Method II

A Ev [n] 1Ev [n] δEv [n]

0.05 −0.511 67(−0.511 53) −0.000 90(−0.000 76) 0.10 (0.25)
0.1 −0.514 21(−0.513 66) −0.003 44(−0.002 89) 0.11 (0.26)
0.15 −0.518 29(−0.517 05) −0.007 52(−0.006 28) 0.12 (0.26)
0.3 −0.539 15(−0.534 23) −0.028 38(−0.023 46) 0.13 (0.28)
0.5 −0.585 59(−0.572 18) −0.074 82(−0.061 42) 0.13 (0.28)

calculated according to methods I and II, with respect to the exactly evaluated1Ev[n]s.
From this table three immediate conclusions can be drawn: first, that method II is more
reliable than method I—in particular notice thatδEv[n] according to method II is almost
independent ofA, unlike δEv[n] according to method I; second, that within the framework
of the first-order perturbation theory, method II, withλ0 = 0.0302, accounts for about 90%
of the total contribution of the inhomogeneous part of the external potential to the total
energy; and finally, that it is important thatλ0 is not chosen too small, a point to which we
have referred in subsection 4.2. It is essential to mention that the difference between the
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results based uponλ0 = 0.0302 andλ0 = 0.01 is not a consequence of the correspondingly
different values forλ1, as this only accounts for deviations less than 5 parts in 106.

From table 2 the relative errors in thetotal energies (in relation to the Exact ones)
according to method I are seen to range from 0.03% to 4.87%, for the cases corresponding to
λ0 = 0.0302; 0.09% to 12.76%, for those corresponding toλ0 = 0.01. According to method
II for these ranges we have 0.02–1.84%, and 0.05–4.09%, corresponding to, respectively,
λ0 = 0.0302 andλ0 = 0.01. These are to be compared with the above-mentioned ranges as
obtained through use of the zeroth-order perturbation theory. It appears that forA between
0 and approximately 0.3 the zeroth-order results are closer to the Exact results than the
first-order results are [42]. This should not cause concern, as there is noa priori reason
why the perturbation series under consideration should convergeuniformly. Moreover, for
A & 0.3 the results based upon method II turn out to be more accurate than those based
upon the zeroth-order perturbation theory.

Since our calculations have only involved non-metallic systems, we may only reasonably
compare the above-mentioned accuracies with those achieved by other approximate methods
pertaining to semiconductors or insulators. Wang and Teter [12] present, amongst other
things, two sets of results for the total energies of bulk Si in the diamond structure, as
obtained from their first- and second-order expressions forTs [n]; see tables 1 and 2 in [12],
in which in addition results obtained through the use of other approximate expressions
for Ts [n] can be found. Taking the ratio of the LDA direct-band-gap energy to the LDA
value for the valence bandwidth as a measure for characterizing a semiconductor, we can
compare the results in these tables with our present results pertaining toA = 0.1. The
relative errors in thetotal energiesas calculated using the first- and second-order formulae
of Wang and Teter, making use of the self-consistent Kohn–Sham charge density, amount
to (the un-enclosed numbers are from table 1 in [12] and are obtained through use of some
‘smooth’ pseudopotential, while those enclosed by parentheses are from table 2 in [12]
and correspond to some ‘sharp’ pseudopotential): 5.16% (2.96%) and 1.09% (0.72%),
respectively; using a variational charge density, rather than the self-consistent Kohn–Sham
one, leads to 3.24% (2.78%), and 0.45% (4.82%), respectively. These values should be
compared with−0.06%, −0.07% (if the zeroth-order perturbation theory is used, with
λ0 = 0.0302 andλ0 = 0.01, respectively), 0.16% (if method I is used withλ0 = 0.0302),
0.09% (method II,λ0 = 0.0302), 0.42% (method I,λ0 = 0.01), and 0.19% (method II,
λ0 = 0.01). Although our presented results are obtained within the framework of the zeroth-
and first-order perturbation theories (method II, however, incorporates some contributions
to infinite order), these are by 1–2 order(s) of magnitude more accurate than those by Wang
and Teter. For a precise comparison of the methods it is of course necessary that the
calculations be performed on identical systems.

In table 3 we present the eigenvalues ofĤ corresponding to the external potential
with A = 0.15 Hartree, as calculated according to methods I and II. We present here
also the weights%s of the corresponding eigenfunctions in the ensemble of which the
average energy is equal to the ground-state total energy (the weights are identical for both
of the first-order methods). The results in this table have been obtained within a space
of 5 plane waves, and for making the inverses ofχ and χ0 meaningful at appropriate
instances we have worked within a four-dimensional subspace. One immediate feature that
this table brings out is that almost the entire ensemble energy (i.e.1Ev[n]) is determined
by the eigenstate of̂H corresponding to the largest but one eigenvalue. This eigenvalue,
moreover, does not seem to be sensitive to the dimensionality of the representation space:
our calculation within a space spanned by 11 plane waves results in%s=10 = 0.659 59.
Although this value is not quite equal to 0.659 46 (see table 3), the values of other%ss and
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Table 3. The eigenvalues of̂H, i.e. {es} (in units of hartrees per electron), calculated according
to methods I and II, and the weights of the eigenfunctions ofĤ, i.e. {%s}, in the ensemble of
which the average energy is equal to the ground-state total energy of the interacting system
(see section 2). The amplitude of the external potentialA is chosen equal to 0.15 Hartree.
The δC and δχ0 employed have been derived through direct calculations atλ0 = 0.0302 and
λ1 = 1.001λ0 (for detailed specifications see the text, or table 2). For the calculations a basis
of 5 plane waves has been employed.

s es (method I) es (method II) %s

1 −0.014 64 −0.014 62 0.0
2 −0.013 45 −0.013 54 0.000 87
3 −0.010 79 −0.011 81 0.0
4 −0.009 94 −0.011 39 0.659 46
5 0.0 0.0 0.339 67

ess corresponding tos = 1, 2, . . . , 9, are such that the ensemble energy1Ev[n] within the
accuracy of our calculations retains the value corresponding to the 5-plane-wave basis set.
Furthermore, within the larger basis all of the eigenstates|s〉 turn out to be either exactly
or nearly doubly degenerate, and interestingly, in each multiplet of (nearly) degenerate
states, onlyone of the two %ss turns out to be non-vanishing. This apparent redundancy
in the dimensionality of the representation space, at least as far as the value for1Ev[n]
is concerned, is computationally a very attractive feature. In particular it is important that
the dominant contributions to1Ev[n] are due to those single-particle states (i.e.|s〉) that
correspond to the fewsmallest|%s |s: problems involving a subspace of eigenvectors whose
eigenvalues are near one of the extrema of the eigenvalues are easily handled by means of
the Lanczos method [43], especially when the eigenproblem concerns a band matrix (recall
that Ĥ is a band matrix).

Further investigation of the formalism presented in this paper will be subject of our
future work. In particular we will investigate to what extent the conclusions arrived at in
this paper are model independent.

6. Summary and concluding remarks

In this paper we have derived an expression for the ground-state total energy of an interacting
system that consists of two contributions: one that is determined entirely by the average
value of the charge density in the system, and the other that is only non-vanishing if the
external potential deviates from a constant. At a first glance, the most interesting aspect
of this second contribution is that it has anexplicit quadratic dependence upon the external
potential so that anmth-order perturbation expansion with respect to the external potential
of the kernel in this contribution (i.e.,χeff ) gives rise to anm+second-order expression for
the ground-state total energy. More importantly, by employing the available ‘exact’ results
for the uniform-electron-gas system obtained through the quantum Monte Carlo calculations,
our expression yields total energies that in so far as the electron–electron interaction effects
are concerned are‘exact’ up to and including the second order in the external potential.

Furthermore, we have provided an exact mapping of the Hamiltonian of a fully
interacting system onto an effective one, of which a well-specified ensemble of eigenvectors
has an energy identical to the ground-state total energy of the fully interacting system. In
a way our result shows similarities with the result that one obtains formally by applying
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the Hubbard–Stratonovich transformation [44] to the partition function pertaining to an
interacting system. Here one also obtains aneffectiveHamiltonian that contains terms that
couple to some fluctuating auxiliary fields. We recall that the eigenfunctions ofχ are
directly related to the fluctuation of electronic charge (plasmons) in an interacting system
[45]. We have not investigated whether formally one can relate the two mappings by taking
a zero-temperature limit of the grand potential as obtained from the functional-integral
representation of the partition function to which the Hubbard–Stratonovich transformation
has been applied. If indeed such a formal link between the two transformations can be
established, it will then be of interest to investigate whether such a connection can be of use
in obtaining novel controlled approximation techniques for evaluating the functional-integral
representation for partition functions.

In applying the perturbation theory within the present formalism, we encounter a
coupling-constant integration over the strength of the external potential, i.e. over theλ.
As this coupling constant occurs in the inverse of some operator (cf. equation (41)), one
may consider approximating this inverse operator by a series expansion that is truncated at
the same order inλ as the order of the perturbation expansion employed for the operator
in question (cf. equation (43)). Although a valid approach, we have shown that it is
not necessary to proceed in this way: through employing a spectral representation for
the operator concerned (cf. equation (46)), the required coupling-constant integral can be
evaluated exactly, giving rise to a non-perturbative result that in real applications can prove
valuable. Our numerical results in the previous section indicate this to be indeed the case.
In view of our statement in the first paragraph of this section, it is clear that the thus-
calculated non-perturbative terms also take into account some non-perturbative electron–
electron interaction effects that can be incorporated‘exactly’ up to and including the second
order in the external potential. We have presented the mathematical details leading to the
above-mentioned non-perturbative result within the framework of the first-order perturbation
theory and outlined the required procedure when a higher-than-first-order perturbation
expansion is attempted. The effort for an exact evaluation of the above-mentioned coupling-
constant integral amounts to one matrix diagonalization for each order of the perturbation
theory. In the context of the present work this operation is not computationally demanding
as it can be shown that in the momentum representation the matrices to be diagonalized
are band matrices, with the bandwidths being determined directly, but not entirely, by
the rate of decrease in the magnitude of the Fourier components of thescreenedexternal
potential (i.e., in the magnitude of̃veff , as presented in the text following equation (28))
for increasing magnitudes of the reciprocal-lattice vectors. We have pointed out that even
if the matrices to be diagonalized are diagonalized perturbatively, with their off-diagonal
elements playing the role of the perturbations, the results for the ground-state total energy
retain their non-perturbative character.

We should also point out that the procedure presented in this paper for obtaining an
effective Hamiltonian with the above-mentioned property can equally well be applied to
the case in which the coupling constant involved in the formalism (i.e.λ) represents the
strength of the electron–electron interaction, rather than that of the electron–ion interaction.
The coupling-constant-integration method for obtaining the correlation part of the total
energy [46] has, to the best of the present author’s knowledge, only been applied to the
uniform-electron-gas system. With the procedure presented in this paper (making use of the
spectral representation of the appropriate operators), the required coupling-constant integral
for the correlation energy corresponding to an inhomogeneous system can be evaluated
explicitly and in this way one arrives at an effective Hamiltonian of which a well-specified
ensemble of eigenvectors yields the correlation energy of the interacting system.
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Although perturbation theory can fruitfully be employed within the framework of the
formalism presented in this paper (with the external potential playing the role of the
perturbation), we have indicated that use of some of the existing approximate expressions
for the dielectric response function of inhomogeneous systems can be equally advantageous.
On the other hand, since most of the reliable models for this function require ana priori
knowledge concerning some other properties of the inhomogeneous system (such as the
average value of the gap), use of such models is only feasible when the above-mentioned
properties are in turn evaluated within the framework of the perturbation theory.
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